An efficient augmented Lagrangian method with applications to total variation minimization
نویسندگان
چکیده
منابع مشابه
An efficient augmented Lagrangian method with applications to total variation minimization
Based on the classic augmented Lagrangian multiplier method, we propose, analyze and test an algorithm for solving a class of equality-constrained nonsmooth optimization problems (chiefly but not necessarily convex programs) with a particular structure. The algorithm effectively combines an alternating direction technique with a nonmonotone line search to minimize the augmented Lagrangian funct...
متن کاملAugmented Lagrangian Method for Total Variation Restoration with Non-quadratic Fidelity
Recently augmented Lagrangian method has been successfully applied to image restoration. We extend the method to total variation (TV) restoration models with non-quadratic fidelities. We will first introduce the method and present an iterative algorithm for TV restoration with a quite general fidelity. In each iteration, three sub-problems need to be solved, two of which can be very efficiently...
متن کاملA Modified Barrier-Augmented Lagrangian Method for Constrained Minimization
We present and analyze an interior-exterior augmented Lagrangian method for solving constrained optimization problems with both inequality and equality constraints. This method, the modified barrier—augmented Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods. It is based on the MBAL function, which treats inequality constraints with a modifi...
متن کاملGlobal minimization using an Augmented Lagrangian method with variable lower-level constraints
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εk-global minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global convergence to an ε-global minimizer of the original problem is proved. The subproblems are solved...
متن کاملTotal variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach.
Fluorescence tomography is an imaging modality that seeks to reconstruct the distribution of fluorescent dyes inside a highly scattering sample from light measurements on the boundary. Using common inversion methods with L(2) penalties typically leads to smooth reconstructions, which degrades the obtainable resolution. The use of total variation (TV) regularization for the inverse model is inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Optimization and Applications
سال: 2013
ISSN: 0926-6003,1573-2894
DOI: 10.1007/s10589-013-9576-1